Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Int J Biol Sci ; 19(6): 1894-1909, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37063425

RESUMO

Epithelial-mesenchymal transition (EMT) is closely associated with tumor invasion and metastasis. However, key regulators of EMT in pancreatic ductal adenocarcinoma (PDAC) need to be further studied. Bioinformatics analyses of pancreatic cancer public datasets showed that glycogen phosphorylase L (PYGL) expression is elevated in quasimesenchymal PDAC (QM-PDAC) and positively associated with EMT. In vitro cellular experiments further confirm PYGL as a crucial EMT regulator in PDAC cells. Functionally, PYGL overexpression promotes cell migration and invasion in vitro and facilitates liver metastasis in vivo, while PYGL knockdown has opposite effects. Mechanically, hypoxia induces PYGL expression in a hypoxia inducible factor 1α (HIF1α)-dependent manner and promotes glycogen accumulation. Elevated PYGL mobilizes accumulated glycogen to fuel glycolysis via its activity as a glycogen phosphorylase, thus inducing the EMT process, which could be suppressed by the glycolysis inhibitor 2-deoxy-D-glucose (2-DG). Clinically, PYGL expression is upregulated in PDAC and correlates with its malignant features and poor prognosis. Collectively, the data from our study reveal that the hypoxia/PYGL/glycolysis-induced EMT promotes PDAC metastasis, which establishes the rational for targeting hypoxia/PYGL/glycolysis/EMT signaling pathway against PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica/genética , Neoplasias Pancreáticas/metabolismo , Fenótipo , Glicogênio Fosforilase Hepática/metabolismo , Neoplasias Pancreáticas
2.
Bioengineered ; 13(5): 12985-12997, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35611851

RESUMO

Pulmonary arterial hypertension (PAH) is a cardiovascular disease that has high incidence and causes massive deaths. miR-155-5p/PYGL pathway was revealed to play a crucial role in PAH by weighted gene co-expression network analysis (WGCNA). The potential mechanism of miR-155-5p in regulating hypoxia-induced pulmonary artery smooth muscle cell (PASMC) function was analyzed through in vitro experiments. Hypoxia treatment stimulated the proliferation of PASMCs and increased the expression of vascular endothelial growth factor (VEGF) and hypoxia-inducible factor-1α (HIF-1α). At the same time, revealed by qRT-PCR and western blot, the level of miR-155-5p was raised, and the level of PYGL was decreased in hypoxia-induced PASMCs. Through CCK-8 assay, transwell assay and flow cytometry, it was revealed that miR-155-5p inhibitor remarkably inhibited the cell proliferation and migration and decreased the proportion of hypoxia-stimulated PASMCs in S and G2/M phases. Dual-luciferase reporter system was subsequently applied to validate the straight regulation of miR-155-5p on PYGL based on the analysis of online database. Furthermore, siPYGL was revealed to reverse the influence of miR-155-5p inhibitor on hypoxia-induced PASMCs. These outcomes indicate that the increased level of miR-155-5p in hypoxia-stimulated PASMCs could enhance the cell proliferation, cell migration, and cell cycle progression by targeting PYGL directly. This study may supply novel treatment strategies for PAH.Abbreviations: PH, pulmonary hypertension; PAH, pulmonary arterial hypertension; WGCNA, weighted gene co-expression network analysis; PASMCs, pulmonary artery smooth muscle cells; VEGF, vascular endothelial growth factor; HIF-1α, hypoxia-inducible factor-1α; SMCs, smooth muscle cells; DEGs, differentially expressed genes; GEO, Gene Expression Omnibus; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; FBS, fetal bovine serum; OD, optical density; BCA, bicinchoninic acid; PVDF, polyvinylidene fluoride; PBS, phosphate-buffered saline; BP, biological process; MF, molecular function; CC, cell component.


Assuntos
Glicogênio Fosforilase Hepática , MicroRNAs , Hipertensão Arterial Pulmonar , Hipóxia Celular/genética , Movimento Celular/genética , Proliferação de Células/genética , Células Cultivadas , Glicogênio Fosforilase Hepática/genética , Glicogênio Fosforilase Hepática/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Músculo Liso Vascular , Miócitos de Músculo Liso/metabolismo , Artéria Pulmonar/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
3.
Hum Mutat ; 43(5): 557-567, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35143115

RESUMO

Glycogen storage disease (GSD) Type VI is a glycogenolysis disorder caused by variants of PYGL. Knowledge about this disease is limited because only approximately 50 cases have been reported. We investigated the clinical profiles, molecular diagnosis, and treatment outcomes in patients with GSD VI from 2000 to 2021. The main initial clinical features of this cohort include hepatomegaly, short stature, elevated liver transaminases, hypertriglyceridemia, fasting hypoglycemia, and hyperuricemia. After uncooked cornstarch treatment, the stature and biochemical parameters improved significantly (p < 0.05). However, hyperuricemia recurred in most patients during adolescence. Among the 56 GSD VI patients, 54 biallelic variants and two single allelic variants of PYGL were identified, of which 43 were novel. There were two hotspot variants, c.1621-258_2178-23del and c.2467C>T p.(Gln823*), mainly in patients from Southwest and South China. c.1621-258_2178-23del is a 3.6 kb deletion that results in an out-of-frame deletion r.1621_2177del and an in-frame deletion r.1621_2265del. Our data show for the first time that long-term monitoring of uric acid is recommended for older GSD VI patients. This study also broadens the variant spectrum of PYGL and indicates that there are two hot-spot variants in China.


Assuntos
Doença de Depósito de Glicogênio Tipo VI , Doença de Depósito de Glicogênio , Hiperuricemia , Adolescente , Seguimentos , Glicogênio Fosforilase Hepática , Doença de Depósito de Glicogênio/diagnóstico , Doença de Depósito de Glicogênio/genética , Doença de Depósito de Glicogênio Tipo VI/diagnóstico , Humanos
4.
Future Oncol ; 18(5): 579-596, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35037470

RESUMO

Aim: PYGL has been reported to have carcinogenic effects in a variety of tumors. This study is the first to reveal the relationship between PYGL and the prognosis of glioma. Materials & methods: Analyzing the Chinese Glioma Genome Atlas database, the authors revealed the expression status and prognostic value of PYGL in gliomas and used quantitative real-time PCR to verify PYGL expression again. Subsequently, they used Gene Set Enrichment Analysis to explore the biological pathways that PYGL may participate in. The authors also used the tumor immune estimation resource database to explore the relationship between PYGL and tumor immune cells. Results: PYGL is involved in the malignant progression of glioma. Conclusions: PYGL can be used as a new biomarker and molecular target for evaluating the prognosis and immunotherapy of glioma.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Encefálicas/genética , Perfilação da Expressão Gênica , Glioma/genética , Glicogênio Fosforilase Hepática/genética , Neoplasias Encefálicas/metabolismo , Biologia Computacional , Regulação Neoplásica da Expressão Gênica , Glicogênio Fosforilase Hepática/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases , Prognóstico , Receptores Notch/metabolismo , Transdução de Sinais , Análise de Sobrevida , Células Tumorais Cultivadas , Fator A de Crescimento do Endotélio Vascular/metabolismo
5.
Eur J Immunol ; 52(3): 484-502, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34870329

RESUMO

To better understand the mechanisms at the basis of neutrophil functions during SARS-CoV-2, we studied patients with severe COVID-19 pneumonia. They had high blood proportion of degranulated neutrophils and elevated plasma levels of myeloperoxidase (MPO), elastase, and MPO-DNA complexes, which are typical markers of neutrophil extracellular traps (NET). Their neutrophils display dysfunctional mitochondria, defective oxidative burst, increased glycolysis, glycogen accumulation in the cytoplasm, and increase glycogenolysis. Hypoxia-inducible factor 1α (ΗΙF-1α) is stabilized in such cells, and it controls the level of glycogen phosphorylase L (PYGL), a key enzyme in glycogenolysis. Inhibiting PYGL abolishes the ability of neutrophils to produce NET. Patients displayed significant increases of plasma levels of molecules involved in the regulation of neutrophils' function including CCL2, CXCL10, CCL20, IL-18, IL-3, IL-6, G-CSF, GM-CSF, IFN-γ. Our data suggest that metabolic remodelling is vital for the formation of NET and for boosting neutrophil inflammatory response, thus, suggesting that modulating ΗΙF-1α or PYGL could represent a novel approach for innovative therapies.


Assuntos
COVID-19/imunologia , COVID-19/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo , SARS-CoV-2 , Adulto , Idoso , Idoso de 80 Anos ou mais , COVID-19/sangue , Estudos de Casos e Controles , Estudos de Coortes , Citocinas/sangue , Armadilhas Extracelulares/imunologia , Armadilhas Extracelulares/metabolismo , Feminino , Glicogênio Fosforilase Hepática/sangue , Granulócitos/imunologia , Granulócitos/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/sangue , Masculino , Redes e Vias Metabólicas/genética , Redes e Vias Metabólicas/imunologia , Pessoa de Meia-Idade , Ativação de Neutrófilo , Peroxidase/sangue , Explosão Respiratória , Índice de Gravidade de Doença
6.
Sci Rep ; 11(1): 20761, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34675331

RESUMO

Hair follicles (HFs) are unique, multi-compartment, mini-organs that cycle through phases of active hair growth and pigmentation (anagen), apoptosis-driven regression (catagen) and relative quiescence (telogen). Anagen HFs have high demands for energy and biosynthesis precursors mainly fulfilled by aerobic glycolysis. Histochemistry reports the outer root sheath (ORS) contains high levels of glycogen. To investigate a functional role for glycogen in the HF we quantified glycogen by Periodic-Acid Schiff (PAS) histomorphometry and colorimetric quantitative assay showing ORS of anagen VI HFs contained high levels of glycogen that decreased in catagen. qPCR and immunofluorescence microscopy showed the ORS expressed all enzymes for glycogen synthesis and metabolism. Using human ORS keratinocytes (ORS-KC) and ex vivo human HF organ culture we showed active glycogen metabolism by nutrient starvation and use of a specific glycogen phosphorylase (PYGL) inhibitor. Glycogen in ORS-KC was significantly increased by incubation with lactate demonstrating a functional Cori cycle. Inhibition of PYGL significantly stimulated the ex vivo growth of HFs and delayed onset of catagen. This study defines translationally relevant and therapeutically targetable new features of HF metabolism showing that human scalp HFs operate an internal Cori cycle, synthesize glycogen in the presence of lactate and modulate their growth via PYGL activity.


Assuntos
Glicogênio Fosforilase Hepática/metabolismo , Glicogênio/metabolismo , Folículo Piloso/crescimento & desenvolvimento , Células Cultivadas , Folículo Piloso/metabolismo , Folículo Piloso/ultraestrutura , Humanos , Insulina/metabolismo , Ácido Láctico/metabolismo , Técnicas de Cultura de Órgãos
7.
Bioengineered ; 12(1): 6687-6702, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34516362

RESUMO

Esophageal cancer (ESCA), as a common cancer worldwide, is a main cause of cancer-related mortality. Comprehensive studies on molecular mechanism of ESCA have been carried out. Though numerous long noncoding RNAs (lncRNAs) was reported to participate in the occurrence and development of ESCA, the potential role of lncRNA potassium calcium-activated channel subfamily M regulatory beta subunit 2 (KCNMB2) antisense RNA 1 (KCNMB2-AS1) in ESCA remains to be discovered. This study intends to investigate the detailed function and molecular mechanism of KCNMB2-AS1 in ESCA. Gene expression was evaluated by reverse transcription quantitative polymerase chain reaction (RT-qPCR). Cell proliferation was examined by Cell Counting Kit-8 (CCK-8) assay and colony formation assay. Cell invasion and migration were measured by wound healing assay and Transwell assay. Luciferase reporter assay was adopted to validate the interaction between KCNMB2-AS1 and miR-3194-3p. Western blotting was performed to assess protein levels. We discovered that KCNMB2-AS1 was significantly upregulated in ESCA. KCNMB2-AS1 downregulation suppressed the growth, invasion, migration and stemness of ESCA cells. KCNMB2-AS1 bound with miR-3194-3p, and glycogen phosphorylase L (PYGL) was a direct target of miR-3194-3p. KCNMB2-AS1 upregulated PYGL expression by directly binding with miR-3194-3p. Additionally, PYGL overexpression abolished the inhibitory influence of KCNMB2-AS1 depletion on ESCA cell behaviors. Collectively, lncRNA KCNMB2-AS1 promotes ESCA development through targeting the miR-3194-3p/ PYGL axis, which might provide theoretical basis to explore novel biomarkers for ESCA treatment.


Assuntos
Neoplasias Esofágicas , Glicogênio Fosforilase Hepática/genética , MicroRNAs/genética , RNA Longo não Codificante/genética , Linhagem Celular Tumoral , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Técnicas de Silenciamento de Genes , Glicogênio Fosforilase Hepática/metabolismo , Humanos , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , Transcriptoma/genética
8.
Medicine (Baltimore) ; 100(16): e25520, 2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33879691

RESUMO

RATIONALE: Glycogen storage disease (GSD) type VI is a rare disease caused by the inherited deficiency of liver phosphorylase. PATIENT CONCERNS: The proband, a 61-month-old Chinese boy, manifested intermittent hematochezia, growth retardation, hepatomegaly, damage of liver function, mild hypoglycemia, and hyperlactatemia. The other patient was a 107-month-old Chinese girl with growth retardation, hepatomegaly, mild hypoglycemia, and hyperlactatemia. In order to further confirm the diagnosis, we conducted a liver biopsy and detected blood samples for their gene using IDT exon chip capture and high-throughput sequencing. DIAGNOSES: According to the clinical symptoms, physical examination, laboratory examinations, liver biopsy, and the genetic test finding, the 2 patients were diagnosed GSD VI. INTERVENTIONS: They were treated mainly with uncooked cornstarch. OUTCOMES: There were 2 mutations of PYGL gene in this pedigree. c.2467C>T (p. Q823X) and c.2178-2A>C occurred both in the proband and his second sister. LESSONS: As a novel mutation, c.2178-2A>C enriches the mutation spectrum of PYGL gene. The different degrees of elevated lactate is an unusual phenotype in GSD VI patients. It is not clear if this is caused by the new mutation of c. 2178-2A > C. Long-term complications remains to be observed.


Assuntos
Glicogênio Fosforilase Hepática/genética , Doença de Depósito de Glicogênio Tipo VI/genética , Criança , Pré-Escolar , Análise Mutacional de DNA , Feminino , Doença de Depósito de Glicogênio Tipo VI/diagnóstico , Doença de Depósito de Glicogênio Tipo VI/patologia , Humanos , Fígado/patologia , Masculino , Mutação , Linhagem
9.
J Mol Diagn ; 22(12): 1373-1382, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32961316

RESUMO

The PYGL gene is the only established gene known to cause glycogen storage disease type VI (GSD6), which is a rare autosomal recessive disorder associated with hepatomegaly, elevated levels of hepatic transaminases, and hypoglycemia. Extended bioinformatics analysis was performed on the exome sequencing data of 5 patients who were clinically diagnosed as having or highly suspected of having GSD, and a single heterozygous pathogenic or likely pathogenic or rare variant of uncertain significance single-nucleotide variant was identified on the PYGL gene. A recurrent, novel, 3.6-kb deletion involving exons 14 to 17 of PYGL was identified in three of the five patients. Together with the two novel and one established stop-gain SNVs, they were diagnosed as compounds heterozygous of PYGL variants and confirmed as GSD6. The detected 3.6-kb deletion was further screened in a Chinese cohort of 31,317 individuals without hepatic abnormalities, and 10 carriers were identified, showing an allele frequency of 0.016%. Compared with the previously established 47 PYGL pathogenic or likely pathogenic SNVs, the novel pathogenic deletion had the second highest allele frequency among the population. This recurrent, novel, 3.6-kb deletion improved the molecular diagnostic rate of the GSD6. The relatively high frequency of the variant suggests that it is a potential mutation hotspot in patients with GSD6.


Assuntos
Deleção de Genes , Glicogênio Fosforilase Hepática/genética , Doença de Depósito de Glicogênio Tipo VI/genética , Polimorfismo de Nucleotídeo Único , Criança , Pré-Escolar , China/epidemiologia , Exoma , Éxons , Feminino , Frequência do Gene , Doença de Depósito de Glicogênio Tipo VI/epidemiologia , Heterozigoto , Humanos , Lactente , Recém-Nascido , Masculino , Reação em Cadeia da Polimerase em Tempo Real/métodos , Estudos Retrospectivos , Sequenciamento do Exoma/métodos
10.
J Pediatr Endocrinol Metab ; 33(10): 1321-1333, 2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32892177

RESUMO

Objectives The aim of our study is to systematically describe the genotypic and phenotypic spectrum of Glycogen storage disease type VI (GSD VI), especially in Chinses population.  Methods We retrospectively analyzed ten Chinese children diagnosed as having GSD VI confirmed by next generation sequencing in Children's Hospital of Fudan University and Jinshan Hospital of Fudan University. We described the genotypic and phenotypic spectrum of GSD VI through the clinical and genetic data we collected. Moreover, we conducted a literature review, and we compared the genotypic and phenotypic spectrum of GSD VI between Chinese population and non Chinese population.  Results For the first time, we found that four Chinese patients showed cirrhosis in liver biopsy characterized by the formation of regenerative nodules. In addition, c.772+1G>A and c.1900G>C, p.(Asp634His) were recurrent in three Chinese families and four European families respectively indicating that the genotypic spectrum of PYGL gene may vary among the population. Furthermore, we identified seven novel variants in PYGL gene.  Conclusions Our study enriched the genotypic and phenotypic spectrum of GSD VI, and provided a new clue for management of GSD VI.


Assuntos
Povo Asiático/genética , Glicogênio Fosforilase Hepática/genética , Doença de Depósito de Glicogênio Tipo VI/complicações , Cirrose Hepática/patologia , Mutação , Biomarcadores/análise , Estudos de Casos e Controles , Criança , Pré-Escolar , Feminino , Seguimentos , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Cirrose Hepática/etiologia , Cirrose Hepática/metabolismo , Masculino , Prognóstico , Estudos Retrospectivos
11.
Mol Genet Genomic Med ; 8(10): e1444, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32772503

RESUMO

BACKGROUND: Glycogen storage disease (GSD) is a relatively rare inborn metabolic disorder, our study aims to investigate the genotypic and clinical feature of hepatic GSDs in China. METHODS: The clinical and genotypic data of 49 patients with hepatic GSDs were collected retrospectively and analyzed. RESULTS: After gene sequencing, 49 patients were diagnosed as GSDs, including GSD Ia (24 cases), GSD IIIa (11 cases), GSD IXa (8 cases), GSD VI (3 cases) and GSD Ib (3 cases). About 45 gene variants of G6PC, AGL, PHKA2, PYGL, and SLC37A4 were detected; among which, 22 variants were unreported previously. c.648G>T (p. Leu216Leu) of G6PC exon 5 is the most common variant for GSD Ia patients (20/24,83.33%), splice variant c.1735+1G>T of AGL exon 13 is relatively common among GSD IIIa, while novel variant accounts for the majority of GSD IXa and GSD VI patients. As for clinical features, there was no significant difference in the onset age among group GSD Ia, GSD IIIa, and GSD IXa, but the age at diagnosis and average disease duration from diagnosis of GSD Ia were significantly higher than GSD IIIa and GSD IXa. Body weight of GSD patients was basically normal, but growth retardation was relatively common among them, especially for GSD Ia patients; and renomegaly was only found in GSD Ia. Besides, serum cholesterol, triglyceride, lactic acid, and uric acid in GSD Ia were significantly higher than those with GSD IIIa and IXa (p < 0.05); but ALT, AST, CK, and LDH of GSD III and GSD IXa were significantly higher when compared to GSD Ia (p < 0.05). CONCLUSIONS: All hepatic GSDs patients share similarity in clinical and biochemical spectrum, but delayed diagnosis and biochemical metabolic abnormalities were common in GSD Ia. For family with GSD proband, pedigree analysis and genetic testing is strongly recommended.


Assuntos
Genótipo , Doença de Depósito de Glicogênio/genética , Fenótipo , Antiporters/genética , Criança , Pré-Escolar , Feminino , Testes Genéticos/métodos , Testes Genéticos/normas , Glucose-6-Fosfatase/genética , Sistema da Enzima Desramificadora do Glicogênio/genética , Glicogênio Fosforilase Hepática/genética , Doença de Depósito de Glicogênio/classificação , Doença de Depósito de Glicogênio/patologia , Humanos , Lactente , Masculino , Proteínas de Transporte de Monossacarídeos/genética , Mutação , Linhagem , Fosforilase Quinase/genética
12.
BMC Med Genet ; 21(1): 74, 2020 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-32268899

RESUMO

BACKGROUND: PYGL mutations can cause liver phosphorylase deficiency, resulting in a glycogenolysis disorder, namely, glycogen storage disease (GSD) VI. The disease is rarely reported in the Chinese population. GSD VI is mainly characterized in untreated children by hepatomegaly, growth retardation and elevated liver transaminases. CASE PRESENTATION: In this study, we report two GSD VI patients with growth retardation and abnormal liver function. There was no obvious hepatomegaly for one of them. Whole exome sequencing (WES) combined with copy number variation analysis was performed. We found a novel homozygous gross deletion, c.1621-258_2178-23del, including exons 14-17 of PYGL in patient 1. The exons 14-17 deletion of PYGL resulted in an in-frame deletion of 186 amino acids. Compound heterozygous mutations of PYGL were identified in patient 2, including a novel missense mutation c.1832C > T/p.A611V and a recurrent nonsense mutation c.280C > T/p.R94X. After treatment with uncooked cornstarch (UCS) 8 months for patient 1 and 13 months for patient 2, the liver transaminases of both patients decreased to a normal range and their stature was improved. However, patient 1 still showed mild hypertriglyceridemia. CONCLUSIONS: We describe two GSD VI patients and expand the spectrum of PYGL mutations. Patient 1 in this study is the first GSD VI case that showed increased transaminases without obvious hepatomegaly due to a novel homozygous gross deletion of PYGL identified through WES.


Assuntos
Glicogênio Fosforilase Hepática/genética , Doença de Depósito de Glicogênio Tipo VI/genética , Mutação , Pré-Escolar , China , Feminino , Doença de Depósito de Glicogênio Tipo VI/complicações , Doença de Depósito de Glicogênio Tipo VI/metabolismo , Doença de Depósito de Glicogênio Tipo VI/patologia , Hepatomegalia/etiologia , Hepatomegalia/genética , Humanos , Lactente , Fígado/patologia , Polimorfismo Genético , Deleção de Sequência
13.
Dev Comp Immunol ; 108: 103666, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32126244

RESUMO

Psoriasis is a skin inflammatory disorder that affects 3% of the human population. Although several therapies based on the neutralization of proinflammatory cytokines have been used with relative success, additional treatments are required. The in silico analysis of gene expression data of psoriasis lesional skin and an analysis of vitamin B6 metabolites in the sera of psoriasis patients point to altered vitamin B6 metabolism at both local and systemic levels. Functional studies showed that vitamin B6 vitamers reduced skin neutrophil infiltration, oxidative stress and Nfkb activity in two zebrafish models of skin inflammation. Strikingly, inhibition of glycogen phosphorylase L (Pygl) and glucose-6-phosphate dehydrogenase (G6pd), two vitamin B6-regulated enzymes, alleviated oxidative-stress induced inflammation in zebrafish skin inflammation models. Despite the central role of G6pd in antioxidant defenses, the results of the study demonstrate that glycogen stores and G6pd fuel NADPH oxidase to promote skin inflammation, revealing novel targets for the treatment of skin inflammatory disorders.


Assuntos
Glucosefosfato Desidrogenase/metabolismo , Glicogênio Fosforilase Hepática/metabolismo , Psoríase/imunologia , Vitamina B 6/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Biópsia , Conjuntos de Dados como Assunto , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Glucosefosfato Desidrogenase/antagonistas & inibidores , Glucosefosfato Desidrogenase/genética , Glicogênio/metabolismo , Glicogênio Fosforilase Hepática/antagonistas & inibidores , Glicogênio Fosforilase Hepática/genética , Células HaCaT , Humanos , Microscopia Intravital , NADPH Oxidases/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/imunologia , Psoríase/sangue , Psoríase/tratamento farmacológico , Psoríase/patologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Pele/diagnóstico por imagem , Pele/efeitos dos fármacos , Pele/imunologia , Pele/patologia , Vitamina B 6/sangue , Peixe-Zebra
14.
Eur J Pediatr ; 179(3): 405-413, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31768638

RESUMO

Glycogen storage disease type VI (GSD-VI; also known as Hers disease, liver phosphorylase deficiency) is caused by mutations in the gene coding for glycogen phosphorylase (PYGL) leading to a defect in the degradation of glycogen. Since there are only about 40 patients described in literature, our knowledge about the course of the disease is limited. In order to evaluate the long-term outcome of patients with GSD-VI, an observational retrospective case study of six patients was performed at the University Children's Hospital Zurich. The introduction of small, frequent meals as well as cornstarch has led to normal growth in all patients and to normalization of liver transaminases in most patients. After starting the dietary regimen, there were no signs of hypoglycemia. However, three of six patients showed persistent elevation of triglycerides. Further, we identified four novel pathogenic PYGL mutations and describe here their highly variable impact on phosphorylase function.Conclusions: After establishing the diagnosis, dietary treatment led to metabolic stability and to prevention of hypoglycemia. Molecular genetics added important information for the understanding of the clinical variability in this disease. While outcome was overall excellent in all patients, half of the patients showed persistent hypertriglyceridemia even after initiating treatment.What is Known:• Glycogen storage disease type VI (GSD-VI) is a metabolic disorder causing a defect in glycogen degradation. Dietary treatment normally leads to metabolic stability and prevention of hypoglycemia.• However, our knowledge about the natural course of patients with GSD-VI is limited.What is New:• While outcome was overall excellent in all patients, half of the patients showed persistent hypertriglyceridemia even after initiating treatment.• Molecular genetics added important information for the understanding of the clinical variability in this disease.


Assuntos
Glicogênio Fosforilase Hepática/genética , Doença de Depósito de Glicogênio Tipo VI/genética , Pré-Escolar , Feminino , Glicogênio Fosforilase Hepática/sangue , Doença de Depósito de Glicogênio Tipo VI/complicações , Doença de Depósito de Glicogênio Tipo VI/dietoterapia , Humanos , Hipertrigliceridemia/etiologia , Lactente , Masculino , Mutação de Sentido Incorreto , Estudos Retrospectivos , Amido/administração & dosagem
15.
Bioorg Med Chem ; 28(1): 115196, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31767404

RESUMO

C-Glucopyranosyl imidazoles, thiazoles, and an N-glucopyranosyl tetrazole were assessed in vitro and ex vivo for their inhibitory efficiency against isoforms of glycogen phosphorylase (GP; a validated pharmacological target for the development of anti-hyperglycaemic agents). Imidazoles proved to be more potent inhibitors than the corresponding thiazoles or the tetrazole. The most potent derivative has a 2-naphthyl substituent, a Ki value of 3.2 µM for hepatic glycogen phosphorylase, displaying also 60% inhibition of GP activity in HepG2 cells, compared to control vehicle treated cells, at 100 µM. X-Ray crystallography studies of the protein - inhibitor complexes revealed the importance of the architecture of inhibitor associated hydrogen bonds or sulfur σ-hole bond interactions to Asn284 OD1, offering new insights to structure-based design efforts. Moreover, while the 2-glucopyranosyl-tetrazole seems to bind differently from the corresponding 1,2,3-triazole compound, the two inhibitors are equipotent.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Glicogênio Fosforilase Hepática/antagonistas & inibidores , Imidazóis/farmacologia , Tetrazóis/farmacologia , Tiazóis/farmacologia , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Glicogênio Fosforilase Hepática/metabolismo , Células Hep G2 , Humanos , Hidrogênio/química , Imidazóis/síntese química , Imidazóis/química , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade , Enxofre/química , Tetrazóis/síntese química , Tetrazóis/química , Tiazóis/síntese química , Tiazóis/química
16.
Indian Pediatr ; 54(9): 775-776, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28984260

RESUMO

BACKGROUND: Glycogen storage disease type VI (GSD-VI) presents with failure to thrive and also fibrosis in some cases, without cirrhosis. CASE CHARACTERISTICS: 2½-year-old girl presented with short stature, transaminase elevation and significant fibrosis, suggesting GSD-III. OBSERVATION: A pathogenic mutation in PYGL gene suggested GSD-VI. MESSAGE: GSD-VI should be a differential diagnosis whenever GSD-III is suspected.


Assuntos
Glicogênio Fosforilase Hepática/genética , Doença de Depósito de Glicogênio Tipo VI , Hepatomegalia , Pré-Escolar , Análise Mutacional de DNA , Diagnóstico Diferencial , Feminino , Doença de Depósito de Glicogênio Tipo VI/complicações , Doença de Depósito de Glicogênio Tipo VI/diagnóstico , Doença de Depósito de Glicogênio Tipo VI/genética , Hepatomegalia/complicações , Hepatomegalia/diagnóstico , Hepatomegalia/genética , Humanos , Mutação
17.
Toxicology ; 380: 38-49, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28189721

RESUMO

Excessive exposure to 1,2-Dichloroethane (1,2-DCE), a chlorinated organic toxicant, can lead to liver dysfunction. To fully explore the mechanism of 1,2-DCE-induced hepatic abnormalities, 30 male National Institutes of Health (NIH) Swiss mice were exposed to 0, 350, or 700mg/m3 of 1,2-DCE, via inhalation, 6h/day for 28days. Increased liver/body weight ratios, as well as serum AST and serum ALT activity were observed in the 350 and 700mg/m3 1,2-DCE exposure group mice, compared with the control group mice. In addition, decreased body weights were observed in mice exposed to 700mg/m3 1,2-DCE, compared with control mice. Exposure to 350 and 700mg/m3 1,2-DCE also led to significant accumulation of hepatic glycogen, free fatty acids (FFA) and triglycerides, elevation of blood triglyceride and FFA levels, and decreases in blood glucose levels. Results from microarray analysis indicated that the decreases in glucose-6-phosphatase catalytic subunit (G6PC) and liver glycogen phosphorylase (PYGL) expression, mediated by the activation of AKT serine/threonine kinase 1 (Akt1), might be responsible for the hepatic glycogen accumulation and steatosis. Further in vitro study demonstrated that 2-chloroacetic acid (1,2-DCE metabolite), rather than 1,2-DCE, up-regulated Akt1 phosphorylation and suppressed G6PC and PYGL expression, resulting in hepatocellular glycogen accumulation. These results suggest that hepatic glucose and lipid homeostasis are impaired by 1,2-DCE exposure via down-regulation of PYGL and G6PC expression, which may be primarily mediated by the 2-chloroacetic acid-activated Akt1 pathway.


Assuntos
Glicemia/metabolismo , Dicloretos de Etileno/toxicidade , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Animais , Linhagem Celular , Doença Hepática Induzida por Substâncias e Drogas/genética , Regulação para Baixo , Ácidos Graxos não Esterificados/metabolismo , Fígado Gorduroso/induzido quimicamente , Fígado Gorduroso/genética , Glucose-6-Fosfatase/genética , Glucose-6-Fosfatase/metabolismo , Glicogênio/metabolismo , Glicogênio Fosforilase Hepática/genética , Glicogênio Fosforilase Hepática/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Homeostase , Fígado/metabolismo , Masculino , Camundongos , Fosforilação , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Triglicerídeos/metabolismo , Regulação para Cima
18.
Diabetes ; 65(7): 2051-9, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27207549

RESUMO

A mechanistic cause for Mauriac syndrome, a syndrome of growth failure and delayed puberty associated with massive liver enlargement from glycogen deposition in children with poorly controlled type 1 diabetes, is unknown. We discovered a mutation in the catalytic subunit of liver glycogen phosphorylase kinase in a patient with Mauriac syndrome whose liver extended into his pelvis. Glycogen phosphorylase kinase activates glycogen phosphorylase, the enzyme that catalyzes the first step in glycogen breakdown. We show that the mutant subunit acts in a dominant manner to completely inhibit glycogen phosphorylase kinase enzyme activity and that this interferes with glycogenolysis causing increased levels of glycogen in human liver cells. It is known that even normal blood glucose levels physiologically inhibit glycogen phosphorylase to diminish glucose release from the liver when glycogenolysis is not needed. The patient's mother possessed the same mutant glycogen phosphorylase kinase subunit, but did not have diabetes or hepatomegaly. His father had childhood type 1 diabetes in poor glycemic control, but lacked the mutation and had neither hepatomegaly nor growth failure. This case proves that the effect of a mutant enzyme of glycogen metabolism can combine with hyperglycemia to directly hyperinhibit glycogen phosphorylase, in turn blocking glycogenolysis causing the massive liver in Mauriac disease.


Assuntos
Diabetes Mellitus Tipo 1/genética , Glicogênio Fosforilase Hepática/metabolismo , Glicogênio/metabolismo , Transtornos do Crescimento/genética , Hepatomegalia/genética , Fosforilase Quinase/genética , Puberdade Tardia/genética , Adolescente , Diabetes Mellitus Tipo 1/metabolismo , Transtornos do Crescimento/metabolismo , Hepatomegalia/metabolismo , Humanos , Masculino , Mutação , Fosforilase Quinase/metabolismo , Puberdade Tardia/metabolismo , Síndrome
19.
Am J Physiol Gastrointest Liver Physiol ; 308(11): G964-74, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25857999

RESUMO

Chronic ethanol consumption has been shown to significantly decrease hepatic glycogen content; however, the mechanisms responsible for this adverse metabolic effect are unknown. In this study, we examined the impact chronic ethanol consumption has on time-of-day-dependent oscillations (rhythms) in glycogen metabolism processes in the liver. For this, male C57BL/6J mice were fed either a control or ethanol-containing liquid diet for 5 wk, and livers were collected every 4 h for 24 h and analyzed for changes in various genes and proteins involved in hepatic glycogen metabolism. Glycogen displayed a robust diurnal rhythm in the livers of mice fed the control diet, with the peak occurring during the active (dark) period of the day. The diurnal glycogen rhythm was significantly altered in livers of ethanol-fed mice, with the glycogen peak shifted into the inactive (light) period and the overall content of glycogen decreased compared with controls. Chronic ethanol consumption further disrupted diurnal rhythms in gene expression (glycogen synthase 1 and 2, glycogenin, glucokinase, protein targeting to glycogen, and pyruvate kinase), total and phosphorylated glycogen synthase protein, and enzyme activities of glycogen synthase and glycogen phosphorylase, the rate-limiting enzymes of glycogen metabolism. In summary, these results show for the first time that chronic ethanol consumption disrupts diurnal rhythms in hepatic glycogen metabolism at the gene and protein level. Chronic ethanol-induced disruption in these daily rhythms likely contributes to glycogen depletion and disruption of hepatic energy homeostasis, a recognized risk factor in the etiology of alcoholic liver disease.


Assuntos
Consumo de Bebidas Alcoólicas/efeitos adversos , Ritmo Circadiano , Etanol/efeitos adversos , Glicogênio Hepático/metabolismo , Animais , Ritmo Circadiano/efeitos dos fármacos , Ritmo Circadiano/fisiologia , Dieta , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/fisiologia , Expressão Gênica/efeitos dos fármacos , Glucoquinase/genética , Glucoquinase/metabolismo , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Glicogênio Fosforilase Hepática , Glicogênio Sintase/genética , Glicogênio Sintase/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Tempo
20.
Genomics ; 104(3): 163-9, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25135788

RESUMO

In microarray studies alterations in gene expression in circulating leukocytes have shown utility for ischemic stroke diagnosis. We studied forty candidate markers identified in three gene expression profiles to (1) quantitate individual transcript expression, (2) identify transcript clusters and (3) assess the clinical diagnostic utility of the clusters identified for ischemic stroke detection. Using high throughput next generation qPCR 16 of the 40 transcripts were significantly up-regulated in stroke patients relative to control subjects (p<0.05). Six clusters of between 5 and 7 transcripts were identified that discriminated between stroke and control (p values between 1.01e-9 and 0.03). A 7 transcript cluster containing PLBD1, PYGL, BST1, DUSP1, FOS, VCAN and FCGR1A showed high accuracy for stroke classification (AUC=0.854). These results validate and improve upon the diagnostic value of transcripts identified in microarray studies for ischemic stroke. The clusters identified show promise for acute ischemic stroke detection.


Assuntos
Isquemia Encefálica/genética , Família Multigênica , Acidente Vascular Cerebral/genética , Transcriptoma , ADP-Ribosil Ciclase/genética , ADP-Ribosil Ciclase/metabolismo , Idoso , Idoso de 80 Anos ou mais , Antígenos CD/genética , Antígenos CD/metabolismo , Biomarcadores/metabolismo , Isquemia Encefálica/metabolismo , Estudos de Casos e Controles , Fosfatase 1 de Especificidade Dupla/genética , Fosfatase 1 de Especificidade Dupla/metabolismo , Feminino , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Perfilação da Expressão Gênica , Glicogênio Fosforilase Hepática/genética , Glicogênio Fosforilase Hepática/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Fosfolipase D/genética , Fosfolipase D/metabolismo , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de IgG/genética , Receptores de IgG/metabolismo , Acidente Vascular Cerebral/metabolismo , Versicanas/genética , Versicanas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...